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Abstract. The one-electron quantum-electrodynamic corrections to the magnetic-dipole transition am-
plitude between the fine-structure levels (1s22s22p) 2P3/2 − 2P1/2 in boronlike ions are calculated to all
orders in αZ. The results obtained serve for improving the theoretical accuracy of the lifetime of the
(1s22s22p) 2P3/2 level in boronlike argon.

PACS. 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules – 32.70.Cs Os-
cillator strengths, lifetimes, transition moments

1 Introduction

The precision in measurements of decay rates of forbid-
den transitions has considerably increased during the last
years [1–7]. The accuracy achieved for the magnetic-dipole
(M1) transition (1s22s22p) 2P3/2 − 2P1/2 in B-like Ar be-
came better than one part per thousand [6,7]. This ex-
perimental precision demands a corresponding increase in
the accuracy of the theoretical predictions. In a recent
work [8] we have calculated the M1-transition probabili-
ties between the fine-structure levels in B- and Be-like ions
within the region of nuclear charge numbers Z = 16–22.
In particular, it was found that the theoretical result for
the case of Ar13+ deviates from the experimental one by
about 3σ.

In reference [8], the relativistic, interelectronic-
interaction, and quantum-electrodynamic (QED) correc-
tions to the M1-transition amplitude were computed,
while experimental values were taken for the transition
energies. The configuration-interaction method in the
Dirac-Fock-Sturm basis (CIDFS) was employed in or-
der to evaluate the interelectronic-interaction contribu-
tion. Corrections due to single excitations to the negative-
continuum energy states were taken into account in the
many-electron wave functions. As it is known from [9,
10], such corrections may be significant in calculations in-
volving operators, which mix large and small components
of the wave functions, such as the M1-transition opera-
tor. The frequency-dependent term (consult the detailed
description presented in Ref. [11]) was calculated within
perturbation theory to first order in 1/Z. The QED cor-
rection was obtained within leading order by including

a e-mail: volotka@pcqnt1.phys.spbu.ru

the electron anomalous magnetic moment (EAMM) in the
M1-transition operator. Uncalculated higher-order QED
terms together with the experimental errors of the tran-
sition energy determine the total uncertainty of the theo-
retical predictions presented in reference [8]. In this work,
which is aiming for improvements of the evaluation of the
radiative effects to the M1-transition probability in B-like
ions, we present the exact calculation of the one-electron
QED corrections going beyond the EAMM approximation.

Accordingly, the bound-electron propagator is treated
exactly. This approach was already employed for the
evaluation of the radiative corrections to the decays
2p1/2, 2s, 2p3/2 − 1s in hydrogenic ions [12] and parity
nonconserving transitions in neutral Cs and Fr [13,14].
Besides, in reference [15] the QED corrections to the tran-
sition probability between the hyperfine-structure compo-
nents were expressed in terms of the corresponding correc-
tions to the bound-electron g factor. The latter ones were
calculated to all orders in αZ for the 1s and 2s states in
references [16–20].

Relativistic units (� = c = m = 1) and the Heaviside
charge unit [α = e2/(4π), e < 0] are used throughout the
paper.

2 Basic formulas

The magnetic-dipole transition probability between the
one-electron states a and b can be written in the form

WD =
2π

2ja + 1

∑

ma

∑

mb

∑

M

|A1M |2, (1)

where the summation over the photon polarization and the
integration over the photon energy and angles were carried

R
ap

id
e 

N
ot

e

H
ighlight Paper



294 The European Physical Journal D

b

a

ω

(a)

b

a

ω

(b)

b

a

ω

(c)

Fig. 1. Feynman diagrams representing the one-loop vacuum-
polarization correction to the transition amplitude. The double
line indicates the electron propagating in the external field of
the nucleus. The photon propagator is represented by the wavy
line, while the single photon emission is depicted by the wavy
line with arrow.

out. The initial state a is characterized by the angular
momentum ja, its projection ma, and the energy εa, while
the final state b has the corresponding quantum numbers
jb, mb, and the energy εb. The transition amplitude A1M

is defined by

A1M = −
√

3ω
π
〈b|T 1

M |a〉, (2)

where ω is the transition energy and T 1
M denote the spher-

ical components of the M1-transition operator

T1 =
e√
2
j1(ωr)

[r × α]
r

. (3)

Here j1 denotes the first-order spherical Bessel function
and α is the Dirac-matrix vector. In further calculations
we take into account only the first term in the power ex-
pansion of j1(ωr), since for the case under consideration
the transition wavelength is much larger than a typical ion
size. Accordingly, the M1-transition operator T1 can be
related to the magnetic moment operator µ = e[r×α]/2,

T1 =
e

3
√

2
ω[r × α] =

√
2

3
ωµ. (4)

Utilizing the Wigner-Eckart theorem, the transition prob-
ability can be expressed in terms of the reduced matrix
element of T 1

M (see, e.g., Ref. [21]), which does not de-
pend on the momentum projection M . Therefore, it is
sufficient to calculate the transition amplitude for a given
projection M only. In what follows we take M = 0 and
omit the corresponding subscript.

In this work we focus on the one-loop QED contri-
butions to the transition amplitude beyond the EAMM
approximation. The vacuum-polarization (VP) and self-
energy (SE) corrections, which one needs to consider, are
diagrammatically depicted in Figures 1 and 2, respec-
tively. The VP correction corresponding to the diagrams
presented in Figures 1a and 1b (the electric-loop term)
has been calculated in the Uehling potential approxima-
tion. The diagram depicted in Figure 1c (the magnetic-
loop term) has the magnetic-interaction insertion into the
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Fig. 2. Feynman diagrams representing the one-loop self-
energy correction to the transition amplitude. Notations are
the same as in Figure 1.

VP loop. It is known, that the contribution of this dia-
gram vanishes in the Uehling approximation. The higher-
orders VP terms turn out to be rather small and can be
neglected. The remaining part of the work is devoted to
the SE correction. Here we present the formal expressions
for the corresponding contributions, which were derived
at length in reference [22].

The contributions of the diagrams depicted in Fig-
ures 2a and 2b are conveniently divided into irreducible
and reducible parts. The reducible (“red”) contribution
of the diagram depicted in Figure 2a is defined as a part
in which the intermediate state energy εn = εa, respec-
tively εn = εb for the diagram presented in Figure 2b.
The irreducible (“irr”) part is given by the remainder.
The latter one can be written in terms of nondiagonal ma-
trix elements of the self-energy operator (see, for details,
Ref. [22])

∆Airr = −
√

2ω3

3π
(〈b|ΣR(εb)|δa〉 + 〈δb|ΣR(εa)|a〉) , (5)

where the perturbations to the wave functions are de-
fined as

|δa〉 =
εn �=εb∑

n

|n〉〈n|µz|a〉
εb − εn

, |δb〉 =
εn �=εa∑

n

|n〉〈n|µz|b〉
εa − εn

. (6)

ΣR(ε) is the renormalized self-energy insertion, which is
related to the unrenormalized self-energy Σ(ε),

〈a|Σ(ε)|b〉 =
i

2π

∫ ∞

−∞
dE
∑

n

〈an|I(E)|nb〉
ε− E − εn(1 − i0)

, (7)

by ΣR(ε) = Σ(ε) − γ0δm, where δm is the mass coun-
terterm. In equation (7) we use the following notations
αµ = (1,α), I(E) = e2αµανDµν(E), where Dµν(E) is the
photon propagator. The expression for the reducible part
is given by [22]

∆Ared = −
√
ω3

6π
〈b|µz |a〉 (〈a|Σ′(εa)|a〉 + 〈b|Σ′(εb)|b〉) ,

(8)
where Σ′(εa) = dΣ(ε)/dε|ε=εa . The contribution of the
diagram depicted in Figure 2c, known as the vertex (“ver”)
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= + + + Remainder

Fig. 3. The potential expansion of the vertex diagram. The
single line indicates the free-electron propagator and the line
ending with the cross denotes the interaction with the field of
the nucleus. All higher-order contributions are contained in the
Remainder.

term, is given by the equation [22]

∆Aver = −
√

2ω3

3π
i

2π

∫ ∞

−∞
dE

×
∑

n1n2

〈n1|µz|n2〉〈bn2|I(E)|n1a〉
(εb − E − εn1(1 − i0))(εa − E − εn2(1 − i0))

.

(9)

The irreducible part can be renormalized in the same
manner as the ordinary SE correction to the energy. This
renormalization is well-known and discussed in details in
[23–25]. The ultraviolet divergence in the vertex and re-
ducible contributions can be isolated by expanding the
bound-electron propagator in terms of the interaction with
the field of the nucleus. For our purposes, it is convenient
to decompose the total contribution into zero-, one-, and
many-potential terms according to the number of interac-
tions with the external field

∆Aver = ∆Aver(0) +∆Aver(1) +∆Aver(2+) (10)

and

∆Ared = ∆Ared(0) +∆Ared(1) +∆Ared(2+). (11)

This expansion for the vertex diagram is schematically
presented in Figure 3. In order to remove the divergences
in the vertex and reducible terms, we consider them to-
gether. Combining the corresponding parts, we define

∆Avr(i) = ∆Aver(i) +∆Ared(i), (i = 0, 1, 2+). (12)

It can be shown, that the ultraviolet-divergent terms,
which are present in ∆Aver(0) and ∆Ared(0), cancel each
other in ∆Avr(0). The remaining one- and many-potential
terms are ultraviolet finite.

The zero- and one-potential contributions are eval-
uated in momentum space, while the many-potential
term is calculated in the coordinate space employing the
partial-wave expansion. The scheme for the separate treat-
ment of the one-potential term was also used in previous g
factor calculations presented in references [17–20]. It im-
proves considerably the convergence of the partial-wave
expansion in the low and middle Z region. The summa-
rized expressions for the reducible correction are similar
to those derived for the g factor (see, Ref. [20]). How-
ever, for the vertex contribution there are some principal

Table 1. Individual contributions to the one-electron self-
energy correction expressed in terms of the various δ cor-
rections, defined by equation (13). Numbers in parenthesis
represent error in the last digit.

Z δirr δvr(0) δvr(1+) δ

16 0.0177 −0.0124 −0.0065(1) −0.0012(1)

17 0.0195 −0.0136 −0.0075(1) −0.0016(1)

18 0.0213 −0.0148 −0.0084(1) −0.0019(1)

19 0.0232 −0.0160 −0.0094(1) −0.0022(1)

20 0.0252 −0.0172 −0.0105(1) −0.0025(1)

21 0.0272 −0.0185 −0.0116(1) −0.0029(1)

22 0.0292 −0.0197 −0.0128(1) −0.0033(1)

differences. In contrast to equation (4) of reference [20],
two different energies εa and εb enter the denominator of
formula (9) and the matrix element 〈bn2|I(E)|n1a〉 de-
pends on both states a and b. Taking these differences
into account, we derive the corresponding formulas for the
∆Aver(0) term in the Appendix. The derivation of the for-
mulas for the one-potential vertex contribution is some-
what more complicated. However, taking the energy to
be the same for both electron propagators (e.g., εa), the
expressions for ∆Aver(1) can be obtained in the same man-
ner as for the g factor [20]. The remaining many-potential
term can be evaluated by the point-by-point subtraction
of the corresponding zero- and one-potential contribu-
tions in the coordinate space. Consistently, we subtract
the one-potential vertex contribution with the same en-
ergy variable in the electron propagators as it is taken
in the ∆Aver(1) term calculated in the momentum space.
Furthermore, the term with εn1 = εb and εn2 = εa in
equation (9) has an infrared divergence, which is canceled
by the corresponding term of the reducible contribution.

For the numerical evaluation we employ the finite-
basis-set method for the Dirac equation constructed via
the dual kinetic balance approach [26]. The summa-
tion of the partial-wave expansion was performed up to
|κmax| = 10, while the remaining tail was approximated
by a least-square inverse-polynomial fitting.

3 Results and discussion

The one-loop QED corrections beyond the electron
anomalous magnetic moment approximation are conve-
niently expressed in terms of the correction δ, which is
defined through

∆AQED = Anr(2κe +
α

π
δ), (13)

where Anr is the nonrelativistic transition amplitude and

κe =
α

2π
− 0.328 478 965 . . .

(α
π

)2

+ · · · (14)

represents the electron anomalous magnetic factor corre-
sponding to the EAMM term. In Table 1 we present our
results for the one-electron SE correction. The VP term
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Table 2. The decay rates W [s−1] of the transition (1s22s22p) 2P3/2 − 2P1/2 and the lifetime τ [ms] of the (1s22s22p) 2P3/2

state in B-like ions. The transition energies are given in cm−1. The values of W 0 are taken from reference [8]. Results of the
present work ∆WQED, Wtotal, and τtotal are given in columns 4 to 6. For comparison, the experimental values τexpt are presented
in the last column. Numbers in parenthesis denote the estimated uncertainty.

Ions Energy and reference W 0 [8] ∆WQED Wtotal τtotal τexpt and reference

S11+ 13135(1) [27] 20.34481 0.09444 20.439(5) 48.93(1)

Cl12+ 17408(20) [27] 47.34975 0.21972 47.57(16) 21.02(7) 21.2(6) [5]

21.1(5) [5]

Ar13+ 22656.22(1) [28] 104.36006 0.48419 104.846(3) 9.5378(3) 9.12(18) [1]

9.70(15) [3]

9.573(4)(5) [6]

K14+ 29006(25) [27] 218.9394 1.0156 220.0(6) 4.546(12) 4.47(10) [4]

Ti17+ 56243(4) [27] 1594.714 7.393 1602.1(5) 0.6242(2) 0.627(10) [2]

calculated within the Uehling approximation has been
found to be negligible. The various contributions corre-
sponding to the SE corrections to the transition ampli-
tude are given in Table 1. The one- and many-potential
terms are represented as the sum δvr(1+) = δvr(1)+δvr(2+).
As one can see from this table, the occurring cancellation
reduces the total value for the correction δ by an order of
magnitude compared to the individual terms. Most seri-
ous computational difficulties arise from the extrapolation
of the partial-wave expansion of the many-potential term.
In order to estimate the error, we perform a second eval-
uation of δvr(1+) without separating out the one-potential
term. The difference between the results of both calcula-
tions is taken for the uncertainty.

The obtained results allow for an improvement of the
theoretical values of the M1-transition probabilities be-
tween the states (1s22s22p) 2P3/2 − 2P1/2 in B-like ions
presented in [8]. In Table 2 the results of the CIDFS
calculation without the QED term W 0 [8], the improved
radiative correction ∆WQED, the total values of the tran-
sition probability Wtotal, and the lifetime τtotal are com-
piled. For the transition energies we used the experimental
values from references [27,28]. They are presented in the
second column of Table 2. For S11+, Cl12+, K14+, and
Ti17+ the uncertainties of the values of Wtotal and τtotal
are determined by the errors in the experimental transi-
tion energies. Thus the accuracy of the total results for
these ions has not been improved in comparison with the
values presented in reference [8]. However, for Ar13+ the
experimental value for the transition energy is known with
high precision [28] and the uncertainty of the predictions
obtained in reference [8] is determined by the uncalcu-
lated QED terms beyond the EAMM approximation. The
present calculation of the radiative correction∆WQED has
improved the accuracy of the total values of the transi-
tion probability Wtotal and the lifetime τtotal for Ar13+
by an order of magnitude. Furthermore, for argon ion
we have added the probability of the electric-quadrupole
mode WE2 = 0.00194 s−1 calculated in Coulomb gauge in
reference [29] to the total decay rate and lifetime.

In Table 2, we also compare our total results with
corresponding experimental data. The disagreement with
the most accurate experimental value for Ar13+ [6,7] can

be stated. The reason for this discrepancy is still unclear
for us.
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Appendix: Zero-potential vertex term

Let us start from the momentum representation of the
transition amplitude A1M . Referring to equations (2)
and (4) it can be written as

A1M = −
√
ω3

6π
ie

∫
dpdp′

(2π)3

× ψb(p)
[
α × ∇p′δ3(p − p′)

]
M
ψa(p′), (15)

where the gradient ∇p′ acts only on the δ function. In
order to obtain the zero-potential vertex term∆Aver(0), we
substitute α by the renormalized part of the free-electron
vertex operator ΓR(εb,p, εa,p′)

∆Aver(0) = −
√
ω3

6π
ie

∫
dpdp′

(2π)3

× ψb(p)
[
ΓR(εb,p, εa,p′) × ∇p′δ3(p − p′)

]
z
ψa(p′).

(16)

In contrast to the g factor (see Eq. (15) of Ref. [20]), the
wave functions of the initial (a) and final (b) states enter
into equation (16) and ΓR(εb,p, εa,p′) has different en-
ergy arguments. Integrating by parts and performing the
integration over p′ yields

∆Aver(0) = −
√
ω3

6π
ie

{∫
dp

(2π)3
ψb(p)Ξ(εb, εa,p)ψa(p)

−
∫

dp
(2π)3

ψb(p) [ΓR(εb,p, εa,p) × ∇p]z ψa(p)
}
, (17)
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where

Ξ(εb, εa,p) = [∇p′ × ΓR(εb,p, εa,p′)]z |p′=p. (18)

The right side of equation (17) is naturally divided into
two parts∆Aver(0),1 and ∆Aver(0),2. Starting with the first
one, it is convenient to represent the function Ξ(εb, εa,p)
in the form

Ξ(εb, εa,p) = 4πiα
∫

d4k

(2π)4
1
k2
γσ

� p− � k +m

(p− k)2 −m2

× [γ × ∇p]z
� p′− � k +m

(p′ − k)2 −m2
γσ (19)

with p = (εb,p), p′ = (εa,p), and � p = pµγ
µ, respectively.

Using the commutation identity for the γ matrices, we get

Ξ(εb, εa,p) =

α

4iπ3

∫
d4k

k2

1
[(p− k)2 −m2] [(p′ − k)2 −m2]

×
{
γσ(� p− � k +m)[γ × γ]zγσ

+ 2γσ
(� p− � k +m)(� p′− � k −m)

(p′ − k)2 −m2
[γ × (p− k)]zγσ

}
.

(20)

Expressing the integration over the loop momenta k in
terms of the integrals over the Feynman parameters, one
can derive the formula

Ξ(εb, εa,p) =
α

π

{
iγ0γ5γz(C0 + C11 + C12) � p

−
[
� p′(A0 −A1) � p− (A0 + 3A1) + 2p2(A11 −A21)

+ 2p′2(A12 −A22) − 4pµp′µA23

]
[γ × p]z

}
, (21)

which coincides with the corresponding equation in calcu-
lations of the g factor, if one considers εa = εb. Here the
Feynman integrals are determined as

C0 =
∫ 1

0

dy
(yp+ (1 − y)p′)2

(− lnX), (22)
(
C11

C12

)
=
∫ 1

0

dy
(yp+ (1 − y)p′)2

(
y

1 − y

)
(1 − Y lnX),

(23)

A0 =
∫ 1

0

dxdy
(1 − x)(1 − y)

Z2
, (24)

A1 =
∫ 1

0

dxdy
x(1 − x)(1 − y)

Z2
, (25)

(
A11

A12

)
=
∫ 1

0

dxdy
x(1 − x)(1 − y)

Z2

(
y

1 − y

)
, (26)

⎛

⎝
A21

A22

A23

⎞

⎠ =
∫ 1

0

dxdy
x2(1 − x)(1 − y)

Z2

⎛

⎝
y2

(1 − y)2

y(1 − y)

⎞

⎠ ,

(27)

and

X = 1 +
1
Y
, (28)

Y =
1 − yp2 − (1 − y)p′2

(yp+ (1 − y)p′)2
, (29)

Z = x[yp+ (1 − y)p′]2 + 1 − yp2 − (1 − y)p′2.
To carry out the angular integration for the transition

under consideration 2p3/2−2p1/2 we employ the following
results for basic integrals (µ = 1/2)
∫

dΩpχ
†
κ1µ(p̂)σzχκ2µ(p̂) =
{
−2

√
2/3

0
for
for

κ1 = 1,
κ1 = −1,

κ2 = −2,
κ2 = 2,

(30)

∫
dΩpχ

†
κ1µ(p̂)[σ × p̂]zχκ2µ(p̂) =

{
−(

√
2/3)i

(
√

2/3)i
for
for

κ1 = −1,
κ1 = 1,

κ2 = −2,
κ2 = 2,

(31)

where p̂ = p/|p|, χκµ(p̂) is the spherical spinor, and σ
denotes the vector of Pauli matrices. Finally, for the first
part ∆Aver(0),1 we obtain

∆Aver(0),1 =

−
√
ω3

3π
αe

24π4

∫ ∞

0

dprp
2
r

{
−2(C0+C11+C12)(εbgbga+prgbfa)

+pr

[
(εaεb−p2

r)(A0−A1−4A23)− (A0 +3A1)+2(ε2b −p2
r)

× (A11 −A21) + 2(ε2a − p2
r)(A12 −A22)

]
(gbfa − fbga)

− p2
r(εa − εb)(A0 −A1)(gbga − fbfa)

}
, (32)

where pr = |p|, ga(pr) and fa(pr) are the upper and lower
radial components of the wave function in the momentum
representation, respectively.

The second term ∆Aver(0),2 can be calculated sim-
ilarly. Using the expression for the free-electron vertex
function [25] and employing in addition to equation (31)
the following angular integrals
∫

dΩpχ
†
κ1µ(p̂)[p̂ × ∇Ωp ]zχκ2µ(p̂) =

{
(
√

2/3)i
0

for
for

κ1 = 1,
κ1 = −1,

κ2 = −2,
κ2 = 2,

(33)

∫
dΩpχ

†
κ1µ(p̂)[σ × ∇Ωp ]zχκ2µ(p̂) =

{
(−2

√
2/3)i√

2i
for
for

κ1 = −1,
κ1 = 1,

κ2 = −2,
κ2 = 2,

(34)
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where ∇Ωp is the angular part of the gradient, we have

∆Aver(0),2 =

−
√
ω3

3π
αe

96π4

∫ ∞

0

dprp
2
r

{
(
A− εaεbD + p2

rD
)

×
(
gbf

′
a − fbg

′
a +

3
pr
gbfa − 2

pr
fbga

)

− prD(εa − εb)
(
fbf

′
a − gbg

′
a +

3
pr
fbfa − 2

pr
gbga

)

+ (εbB + 2εbD + εaC + 4D)gbga

+ pr(B + 2D + C)fbga

}
, (35)

where g′a(pr) = dga(pr)/dpr, f ′
a(pr) = dfa(pr)/dpr.

Here the set of coefficients are expressed in terms of the
Feynman integrals as

A = C24 − 2 + (ε2b − p2
r)C11 + (ε2a − p2

r)C12

+ 4(εaεb − p2
r)(C0 + C11 + C12) − 2C0 + C11 + C12,

(36)
B = −4(C0 + 2C11 + C12 + C21 + C23), (37)
C = −4(C0 + C11 + 2C12 + C22 + C23), (38)
D = 2(C0 + C11 + C12), (39)

and

C24 = −
∫ 1

0

dy ln(y2(εa − εb)2 − y(εa − εb)2 + 1). (40)

The total result for the zero-potential vertex contribution
is the sum of the corresponding terms from equations (32)
and (35).
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5. E. Träbert, P. Beiersdorfer, G. Gwinner, E.H. Pinnington,
A. Wolf, Phys. Rev. A 66, 052507 (2002)

6. A. Lapierre, U.D. Jentschura, J.R. Crespo López-Urrutia,
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G. Plunien, J.R. Crespo López-Urrutia, A. Lapierre, J.
Ullrich, Phys. Rev. A. 72, 062503 (2005)

9. P. Indelicato, Phys. Rev. Lett. 77, 3323 (1996)
10. A. Derevianko, I.M. Savukov, W.R. Johnson, D.R. Plante,

Phys. Rev. A 58, 4453 (1998)
11. P. Indelicato, V.M. Shabaev, A.V. Volotka, Phys. Rev. A

69, 062506 (2004)
12. J. Sapirstein, K. Pachucki, K.T. Cheng, Phys. Rev. A 69,

022113 (2004)
13. V.M. Shabaev, K. Pachucki, I.I. Tupitsyn, V.A. Yerokhin,

Phys. Rev. Lett. 94, 213002 (2005)
14. V.M. Shabaev, I.I. Tupitsyn, K. Pachucki, G. Plunien,

V.A. Yerokhin, Phys. Rev. A. 72, 062105 (2005)
15. V.M. Shabaev, Can. J. Phys. 76, 907 (1998)
16. S.A. Blundell, K.T. Cheng, J. Sapirstein, Phys. Rev. A 55,

1857 (1997)
17. H. Persson, S. Salomonson, P. Sunnergren, I. Lindgren,

Phys. Rev. A 56, R2499 (1997)
18. T. Beier, I. Lindgren, H. Persson, S. Salomonson, P.

Sunnergren, H. Häffner, N. Hermanspahn, Phys. Rev. A
62, 032510 (2000)

19. V.A. Yerokhin, P. Indelicato, V.M. Shabaev, Phys. Rev.
Lett. 89, 143001 (2002)

20. V.A. Yerokhin, P. Indelicato, V.M. Shabaev, Phys. Rev. A
69, 052503 (2004)

21. I.I. Sobelman, Atomic Spectra and Radiative Transitions
(Springer, New York, 1979)

22. V.M. Shabaev, Phys. Rep. 356, 119 (2002)
23. N.J. Snyderman, Ann. Phys. (N.Y.) 211, 43 (1991)
24. S.A. Blundell, N.J. Snyderman, Phys. Rev. A 44, R1427

(1991)
25. V.A. Yerokhin, V.M. Shabaev, Phys. Rev. A 60, 800

(1999)
26. V.M. Shabaev, I.I. Tupitsyn, V.A. Yerokhin, G. Plunien,

G. Soff, Phys. Rev. Lett. 93, 130405 (2004)
27. B. Edlén, Phys. Scripta 28, 483 (1983)
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